Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 48(5): 447-457, 05/2015. tab, graf
Article in English | LILACS | ID: lil-744369

ABSTRACT

The parasympathetic nervous system is important for β-cell secretion and mass regulation. Here, we characterized involvement of the vagus nerve in pancreatic β-cell morphofunctional regulation and body nutrient homeostasis in 90-day-old monosodium glutamate (MSG)-obese rats. Male newborn Wistar rats received MSG (4 g/kg body weight) or saline [control (CTL) group] during the first 5 days of life. At 30 days of age, both groups of rats were submitted to sham-surgery (CTL and MSG groups) or subdiaphragmatic vagotomy (Cvag and Mvag groups). The 90-day-old MSG rats presented obesity, hyperinsulinemia, insulin resistance, and hypertriglyceridemia. Their pancreatic islets hypersecreted insulin in response to glucose but did not increase insulin release upon carbachol (Cch) stimulus, despite a higher intracellular Ca2+ mobilization. Furthermore, while the pancreas weight was 34% lower in MSG rats, no alteration in islet and β-cell mass was observed. However, in the MSG pancreas, increases of 51% and 55% were observed in the total islet and β-cell area/pancreas section, respectively. Also, the β-cell number per β-cell area was 19% higher in MSG rat pancreas than in CTL pancreas. Vagotomy prevented obesity, reducing 25% of body fat stores and ameliorated glucose homeostasis in Mvag rats. Mvag islets demonstrated partially reduced insulin secretion in response to 11.1 mM glucose and presented normalization of Cch-induced Ca2+ mobilization and insulin release. All morphometric parameters were similar among Mvag and CTL rat pancreases. Therefore, the higher insulin release in MSG rats was associated with greater β-cell/islet numbers and not due to hypertrophy. Vagotomy improved whole body nutrient homeostasis and endocrine pancreatic morphofunction in Mvag rats.


Subject(s)
Adult , Female , Humans , Male , Middle Aged , Health Knowledge, Attitudes, Practice , Smoking Cessation/methods , Smoking/prevention & control , Substance-Related Disorders/rehabilitation , Ambulatory Care/methods , Opiate Substitution Treatment/methods , Opioid-Related Disorders/rehabilitation , Self Report , Smoking Cessation/psychology , Smoking/epidemiology , Smoking/psychology , Tobacco Use Disorder/rehabilitation
2.
Braz. j. med. biol. res ; 42(10): 935-941, Oct. 2009. ilus, tab
Article in English | LILACS | ID: lil-526197

ABSTRACT

A low-protein diet leads to functional and structural pancreatic islet alterations, including islet hypotrophy. Insulin-signaling pathways are involved in several adaptive responses by pancreatic islets. We determined the levels of some insulin-signaling proteins related to pancreatic islet function and growth in malnourished rats. Adult male Wistar rats (N = 20 per group) were fed a 17 percent protein (normal-protein diet; NP) or 6 percent protein (low-protein diet; LP), for 8 weeks. At the end of this period, blood glucose and serum insulin and albumin levels were measured. The morphometric parameters of the endocrine pancreas and the content of some proteins in islet lysates were determined. The β-cell mass was significantly reduced (≅65 percent) in normoglycemic but hypoinsulinemic LP rats compared to NP rats. Associated with these alterations, a significant 30 percent reduction in insulin receptor substrate-1 and a 70 percent increase in insulin receptor substrate-2 protein content were observed in LP islets compared to NP islets. The phosphorylated serine-threonine protein kinase (pAkt)/Akt protein ratio was similar in LP and NP islets. The phosphorylated forkhead-O1 (pFoxO1)/FoxO1 protein ratio was decreased by 43 percent in LP islets compared to NP islets (P < 0.05). Finally, the ratio of phosphorylated-extracellular signal-related kinase 1/2 (pErk1/2) to total Erk1/2 protein levels was decreased by 71 percent in LP islets compared to NP islets (P < 0.05). Therefore, the reduced β-cell mass observed in LP rats is associated with the reduction of phosphorylation in mitogenic-related signals, FoxO1 and Erk proteins. The cause/effect basis of this association remains to be determined.


Subject(s)
Animals , Male , Rats , Forkhead Transcription Factors/metabolism , Insulin-Secreting Cells/pathology , /metabolism , Nerve Tissue Proteins/metabolism , Protein-Energy Malnutrition , Diet, Protein-Restricted , Phosphorylation , Protein-Energy Malnutrition/metabolism , Protein-Energy Malnutrition/pathology , Rats, Wistar
3.
Braz. j. med. biol. res ; 41(6): 519-525, June 2008. graf, tab
Article in English | LILACS | ID: lil-485850

ABSTRACT

During pregnancy and protein restriction, changes in serum insulin and leptin levels, food intake and several metabolic parameters normally result in enhanced adiposity. We evaluated serum leptin and insulin levels and their correlations with some predictive obesity variables in Wistar rats (90 days), up to the 14th day of pregnancy: control non-pregnant (N = 5) and pregnant (N = 7) groups (control diet: 17 percent protein), and low-protein non-pregnant (N = 5) and pregnant (N = 6) groups (low-protein diet: 6 percent). Independent of the protein content of the diet, pregnancy increased total (F1,19 = 22.28, P < 0.001) and relative (F1,19 = 5.57, P < 0.03) food intake, the variation of weight (F1,19 = 49.79, P < 0.000) and final body weight (F1,19 = 19.52, P < 0.001), but glycemia (F1,19 = 9.02, P = 0.01) and the relative weight of gonadal adipose tissue (F1,19 = 17.11, P < 0.001) were decreased. Pregnancy (F1,19 = 18.13, P < 0.001) and low-protein diet (F1,19 = 20.35, P < 0.001) increased the absolute weight of brown adipose tissue. However, the relative weight of this tissue was increased only by protein restriction (F1,19 = 15.20, P < 0.001) and the relative lipid in carcass was decreased in low-protein groups (F1,19 = 4.34, P = 0.05). Serum insulin and leptin levels were similar among groups and did not correlate with food intake. However, there was a positive relationship between serum insulin levels and carcass fat depots in low-protein groups (r = 0.37, P < 0.05), while in pregnancy serum leptin correlated with weight of gonadal (r = 0.39, P < 0.02) and retroperitoneal (r = 0.41, P < 0.01) adipose tissues. Unexpectedly, protein restriction during 14 days of pregnancy did not alter the serum profile of adiposity signals and their effects on food intake and adiposity, probably due to the short term of exposure to low-protein diet.


Subject(s)
Animals , Female , Male , Pregnancy , Rats , Adipose Tissue/metabolism , Diet, Protein-Restricted , Insulin/blood , Leptin/blood , Obesity/metabolism , Obesity/blood , Rats, Wistar
4.
Braz. j. med. biol. res ; 31(6): 841-6, jun. 1998. graf
Article in English | LILACS | ID: lil-210975

ABSTRACT

We studied the development of the insulin secretion mechanism in the pancreas of fetal (19- and 21-day-old), neonatal (3-day-old), and adult (90-day-old) rats in response to stimulation with 8.3 or 16.7 mM glucose, 30 mM K + , 5 mM theophylline (Theo) and 200 µM carbamylcholine (Cch). No effect of glucose or high K + was observed on the pancreas from 19-day-old fetuses, whereas Theo and Cch significantly increased insulin secretion at this age (82 and 127 por cento above basal levels, respectively). High K + also failed to alter the insulin secretion in the pancreas from 21-day-old fetuses, whereas 8.3 mM and 16.7 mM glucose significantly stimulated insulin release by 41 and 54 percent above basal levels, respectively. Similar results were obtained with Theo and Cch. A more marked effect of glucose on insulin secretion was observed in the pancreas of 3-day-old rats, reaching 84 and 179 percent above basal levels with 8.3 mM and 16.7 mM glucose, respectively. At this age, both Theo and Cch increased insulin secretion to close to two-times basal levels. In islets from adult rats, 8.3 mM and 16.7 mM glucose, Theo, and Cch increased the insulin release by 104, 193, 318 and 396 percent above basal levels, respectively. These data indicate that pancreatic B-cells from 19-day-old fetuses were already sensitive to stimuli that use either cAMP or IP 3 and DAG as second messengers, but insensitive to stimuli such as glucose and high K + that induce membrane depolarization. The greater effect of glucose on insulin secretion during the neonatal period indicates that this period is crucial for the maturation of the glucose-sensing mechanism in B-cells


Subject(s)
Animals , Rats , Carbachol/pharmacology , Glucose/pharmacology , Insulin/metabolism , Islets of Langerhans/metabolism , Potassium/pharmacology , Theophylline/pharmacology , Animals, Newborn , Fetus
5.
Braz. j. med. biol. res ; 30(3): 359-61, Mar. 1997. ilus
Article in English | LILACS | ID: lil-191347

ABSTRACT

We studied the synergistic effect of glucose and prolactin (PRL) on insulin secretion and GLUT2 expression in cultured neonatal rat islets. After 7 days in culture, basal insulin secretion (2.8 mM glucose) was similar in control and PRL-treated islets (1.84 ñ 0.06 per cent and 2.08 ñ 0.07 per cent of the islet insulin content, respectively). At 5.6 and 22 mM glucose, insulin secretion was significantly higher in PRL-treated than in control islets, achieving 1.38 ñ 0.15 per cent and 3.09 ñ 0.21 per cent of the islet insulin content in control and 2.43 ñ 0.16 per cent and 4.31 ñ 0.24 per cent of the islet insulin content in PRL-treated islets, respectively. The expression of the glucose transporter GLUT2 in B-cell membranes was dose-dependently increased by exposure of the islet to increasing glucose concentrations. This effect was potentiated in islets cultured for 7 days in the presence of 2 mug/ml PRL. At 5.6 and 10 mM glucose, the increase in GLUT2 expression in PRL-treated islets was 75 per cent and 150 per cent higher than that registered in the respective control. The data presented here indicate that insulin secretion, induced by different concentrations of glucose, correlates well with the expression of the B-cell-specific glucose transporter GLUT2 in pancreatic islets.


Subject(s)
Rats , Infant, Newborn , Glucose/metabolism , Islets of Langerhans/metabolism , Monosaccharide Transport Proteins/biosynthesis , Prolactin/metabolism , Cell Culture Techniques
6.
Braz. j. med. biol. res ; 25(3): 305-7, 1992. ilus
Article in English | LILACS | ID: lil-109032

ABSTRACT

In may countries, including Brazil, extracts of Jatrophona elliptica species are currently used for the treatment of several diseases. Recently it was shown that a purified compound from these plants inhibits contraction of smooth and cardiac muscle in the uM range, probably involving alterations membrane Ca2+ permeability and/or internal Ca2+ distribution. In the collagenase-isolated rat islets and in the absence of glucose, basal insulin secretion measured by radioimmunoassay averaged 122 ñ 13 uU/islet per 90 min (N=27). Jatrophone (1-100 uM/l) caused a dose-related inhibition of glucose-induced insulin release, over basal secretion, with an ID50 close to 8 uM/l. Complete inhibition of insulin release was obtained with 100 uM/l Jatrophone. However, at 100 uM/l (but not at 10 uM/l) concentration, Jatrophone also provoked a reduction in glucose metabolism by the islets which could explain, at least in part, the reduction in insulin secretion. After 120-min incubation,. the glucose metabolism, measured by the 14CO2 production, was reduced from 26.58 ñ 3.63 (N=42) to 7.48 ñ 1.36 (N=16) pmol/l per islet. In conclusion at lower concentrations (10 uM/l) Jatrophone could be a valuable tool for the study of the mechanism of insulin release induced either by glucose or other secretagogues


Subject(s)
Rats , Glucose/metabolism , Insulin/chemically induced , Plants, Medicinal/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL